Chapitre 2: Suites arithmético-géométriques

1 Définition

Activité 1

On considère la suite (u_n) définie par son 1^{er} terme u_0 et la relation $u_{n+1} = a u_n + b$ avec $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$.

- 1. À quelle condition la suite (u_n) est-elle arithmétique? Géométrique?
- 2. On se place dans le cas où $a \neq 1$ et $b \neq 0$, et on pose $v_n = u_n + k$ où k représente un nombre réel.
 - a) Exprimer v_{n+1} en fonction de u_{n+1} , puis en fonction de u_n , et montrer que $v_{n+1} = a\left(u_n + \frac{b+k}{a}\right)$.
 - b) Montrer que $v_{n+1} = a v_n$ si et seulement si $k = \frac{b}{a-1}$. Quelle est alors la nature de la suite (v_n) ?

Définition 1

Dire qu'une suite (u_n) est arithmético-géométrique signifie qu'il existe deux réels a et b tels que pour tout entier naturel la suite vérifie la relation de récurrence $u_{n+1} = au_n + b$.

- **Remarque**: \neg si a = 0 alors la suite est une suite constante égale à b,
 - \circ si a = 1 alors la suite est une suite arithmétique de raison b,
 - \neg si $a \neq 0$ et b = 0 alors la suite est une suite géométrique de raison a.

2 Représentation graphique (rappel de première)

Exemple: soit la suite arithmético-géométrique $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1,5$ et $u_{n+1}=0,6u_n+3$.

Pour représenter cette suite, on utilise une méthode graphique qui s'appuie sur la courbe représentative de la fonction f définissant la suite par récurrence : $u_{n+1} = f(u_n)$.

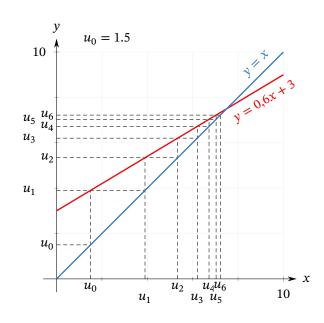
Ici, la fonction f est définie par f(x) = 0.6x + 3, et le terme u_{n+1} est l'image du terme u_n par la fonction f.

On reporte ensuite la valeur u_{n+1} sur l'axe des abscisses par l'intermédiaire de la droite d'équation y=x, puis on réitère le procédé.

Dans cet exemple, la suite semble converger vers une limite ℓ , qui correspond à l'abscisse du point d'intersection des deux droites. Cette valeur correspond à la solution de l'équation $\ell=0,6\ell+3\iff\ell=7,5$.

On dit que ce nombre est un point fixe de la fonction f.

ex. 31, 32, 33, 44, 47 p. 28 à 33



Limites des suites géométriques et arithmético-géométriques

3.1 Cas des suites géométriques

Proposition 2 : limite d'une suite géométrique

1. Soit q un réel positif.

$$\neg si \ 0 < q < 1 \ alors \lim_{n \to +\infty} q^n = 0 \ (la suite (q^n) converge vers zéro),$$

$$\neg si \ q > 1 \ alors \lim_{n \to +\infty} q^n = +\infty \ (la suite (q^n) diverge vers + \infty),$$

$$\neg si \ q=1 \ alors \lim_{n\to +\infty} \ q^n=1 \ (la suite \ (q^n) \ est \ constante \ égale \ à \ 1).$$

2. Soit (u) une suite géométrique de raison q et de premier terme $u_0: \forall n \in \mathbb{N}$, $u_n = u_0 \times q^n$.

La limite d'une telle suite est la limite d'un produit pour lequel il faut appliquer la règle des signes.

Proposition 3 : limite de la somme des termes d'une suite géométrique

Soit (u) une suite géométrique de raison q et de premier terme u_0 .

$$\ \, \circ \ \, si \ \, 0 < q < 1 \ \, alors \ \, \lim_{n \to +\infty} \, S_n = \frac{u_0}{1-q}$$

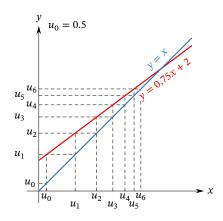
$$(H.P.) \quad \text{si } q > 1 \quad \text{alors} \quad \lim_{n \to +\infty} S_n = \left\{ \begin{array}{l} +\infty \text{ si } u_0 > 0 \\ -\infty \text{ si } u_0 < 0 \end{array} \right.$$

Exercice 3

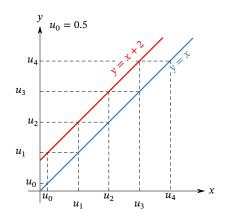
ex. 25 (2),27 à 30 p. 28 à 33

3.2 Cas des suite arithmético-géométriques

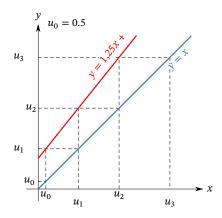
Une suite arithmético-géométrique peut soit converger vers une limite ℓ , soit diverger vers l'infini. Cela dépend des paramètres a et b, ainsi que du premier terme u_0 .



 $a \le 1$: l'écart entre les termes se réduit, la suite converge.



a = 1: l'écart entre les termes est constant, la suite diverge vers $+\infty$.



 $a \ge 1$: l'écart entre les termes augmente, la suite diverge vers $+\infty$.

Case Exercice 4

ex. 34, 35, 43, 46 p. 28 à 33