Chapitre 6 : Lois de probabilités discrètes - loi uniforme

Loi uniforme sur $[\![1, n]\!]$

Notation

Soit n un entier naturel non nul $(n \in \mathbb{N}^*)$.

On note $[1, n] = \{1, 2, ..., n\}$: il s'agit de l'intervalle qui regroupe l'ensemble des **entiers** compris entre 1 et n.

Il ne faut pas le confondre avec [1 , n] qui est l'intervalle qui regroupe l'ensemble des **réels** compris entre 1 et n.

Q Exemple:

$$[1, 6] = \{1, 2, 3, 4, 5, 6\}$$

$$[3, 10] = \{3, 4, 5, 6, 7, 8, 9, 10\}$$

\$^{*} Exercice 1

On jette un dé équilibré, et on considère la variable aléatoire X qui rapporte autant que le numéro qui apparaît.

- 1. Décrire l'univers Ω de l'expérience aléatoire, puis l'univers $X(\Omega)$ de la variable aléatoire.
- 2. On note $A_k = \{$ on obtient le numéro k à l'issue du lancer $\}$. Déterminer $\mathbb{P}(A_k)$ pour $k \in [1, 6]$.
- 3. Décrire l'événement [$X=x_k$]. En déduire $\mathbb{P}\big[\,X=x_k\,\,\big]$ pour $k\in [\![\,1\,,\,6\,]\!]$.

Définition 1

Soit $n \in \mathbb{N}^*$. Dire que la variable aléatoire X suit une loi uniforme sur [1, n] signifie que :

- \square [1, n] constitue l'ensemble des valeurs prises par X, c'est à dire que $X(\Omega) = [1, n]$,
- $\ \, \text{ on } a \quad \boxed{ \ \, \mathbb{P}\big[\, X = x_k \,\,\big] = \frac{1}{n} \,\,}.$

Dans ce cas, on note $X \rightsquigarrow \mathcal{U}(\llbracket 1, n \rrbracket)$.

Exercice 2

On lance un dé équilibré et on désigne par X la variable aléatoire égale à 1 si le numéro obtenu est impair, et 2 sinon. Montrer que X suit une loi uniforme.

L'univers de l'expérience aléatoire est $\Omega = \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$, et l'univers de la variable aléatoire X est $X(\Omega) = \{ 1, 2 \}$.

L'intervalle d'entiers [1,2] constitue donc l'ensemble des valeurs prises par X, et donc, X suivra une loi uniforme sur [1,2] si et seulement si $\mathbb{P}[X=1] = \mathbb{P}[X=2] = \frac{1}{2}$.

$$\text{Or:}\quad \left\{ \begin{array}{l} \mathbb{P}\big[\,X=1\,\big] = \mathbb{P}\,\big(\,\left\{\,\boxdot,\,\circlearrowleft,\,\boxtimes\,\right\}\,\big) = \mathbb{P}\,\big(\,\left\{\,\boxdot\,\right\}\,\big) + \mathbb{P}\,\big(\,\left\{\,\boxdot\,\right\}\,\big) + \mathbb{P}\,\big(\,\left\{\,\boxdot\,\right\}\,\big) = \frac{1}{2} \\ \mathbb{P}\big[\,X=2\,\big] = \mathbb{P}\,\big(\,\left\{\,\boxdot,\,\circlearrowleft,\,\boxtimes\,\right\}\,\big) = \mathbb{P}\,\big(\,\left\{\,\boxdot\,\right\}\,\big) + \mathbb{P}\,\big(\,\left\{\,\boxdot\,\right\}\,\big) + \mathbb{P}\,\big(\,\left\{\,\boxminus\,\right\}\,\big) = \frac{1}{2} \end{array} \right.$$

On en déduit donc que X suit une loi uniforme sur [1, 2].

Exercice 3

Soit
$$X \rightsquigarrow \mathcal{U}(\llbracket 1; 10 \rrbracket)$$

Soit
$$X \rightsquigarrow \mathcal{U}(\llbracket 1; 10 \rrbracket)$$
.

Calculer $\mathbb{P}[X = 4]$, $\mathbb{P}[X \ge 3]$, $\mathbb{P}[2 \le X \le 5]$, $\mathbb{P}[X \ge n]$, $\mathbb{P}[X \le n]$ avec $n \in \mathbb{N}^*$.

1. Puisque
$$X \rightsquigarrow \mathcal{U}(\llbracket 1; 10 \rrbracket)$$
 on a $\mathbb{P}[X = 4] = \frac{1}{10}$.

2.
$$\mathbb{P}[X \ge 3] = \mathbb{P}[X = 3] + \mathbb{P}[X = 4] + \dots + \mathbb{P}[X = 10]$$
 et pour tout entier $k \in [1; 10]$ on a $\mathbb{P}[X = k] = \frac{1}{10}$.

On en déduit que
$$\mathbb{P}[X \ge 3] = 8 \times \frac{1}{10} = \frac{4}{5}$$
.

Attention, entre 3 et 10 il y a 8 valeurs :

Pour faire ce calcul de probabilité, on peut aussi passer par l'événement contraire :

$$\mathbb{P}[X \ge 3] = 1 - \mathbb{P}[X < 3] = 1 - \mathbb{P}[X = 1] - \mathbb{P}[X = 2] = 1 - \frac{2}{10} = \frac{8}{10}$$

3.
$$\mathbb{P}[2 \le X \le 5] = \mathbb{P}[X = 2] + \dots + \mathbb{P}[X = 5] = 4 \times \frac{1}{10} = \frac{2}{5}$$
.

4. Il faut faire une disjonction de cas:

$$\quad \ \ \, \mathbf{1^{er} \ cas}: \ 1 \leq n \leq 10. \quad \text{ Alors} \quad \mathbb{P}\big[\,X \leq n\,\,\big] = \mathbb{P}\big[\,X = 1\,\,\big] + \ldots + \mathbb{P}\big[\,X = n\,\,\big] = n \times \frac{1}{10} = \frac{n}{10}.$$

$$Bilan: \mathbb{P}[X \le n] = \begin{cases} \frac{n}{10} & \text{si} \quad 1 \le n \le 10 \\ 1 & \text{si} \quad n > 10 \end{cases}$$

5. Il faut faire une disjonction de cas:

1er cas: 1 ≤ n ≤ 10. Alors
$$\mathbb{P}[X \ge n] = \mathbb{P}[X = n] + ... + \mathbb{P}[X = 10] = \frac{10 - n + 1}{10} = \frac{11 - n}{10}$$
.

□ 2^e cas: n > 10. Alors $\mathbb{P}[X \ge n] = 0$ car l'événement est impossible.

$$Bilan: $\mathbb{P}[X \le n] = \begin{cases} \frac{11-n}{10} & \text{si} \quad 1 \le n \le 10 \\ 0 & \text{si} \quad n > 10 \end{cases}$$$

Espérance d'une variable aléatoire qui suit une loi uniforme

Proposition 2

Soit X une variable aléatoire qui suit une loi uniforme sur [1, n].

L'espérance mathématique de X est $\mathbb{E}(X) = \frac{n+1}{2}$

Remarque : il s'agit en fait de la moyenne des termes extrêmes, c'est à dire de 1 et n.

Exercice 4

- 1. Soit X une variable aléatoire suivant une loi uniforme sur $\{0, 1, ..., n\}$, où $n \in \mathbb{N}$. On suppose que $\mathbb{E}(X) = 6$. Déterminer n.
- 2. Même question si $X \rightsquigarrow \mathcal{U}(\llbracket 0, n \rrbracket)$.

1.
$$X \rightsquigarrow \mathcal{U}(\llbracket 1, n \rrbracket)$$
 et $\mathbb{E}(X) = 6$ donc $\frac{n+1}{2} = 6$ ssi $n = 11$.

2. On passe par une variable aléatoire intermédiaire pour se ramener à une loi uniforme qui «démarre » à 1.

On pose Y = X + 1: $X(\Omega) = \{0, 1, ..., n\}$ donc $Y(\Omega) = \{1, 2, ..., n+1\}$. Ces deux univers possède le même nombre d'éléments, c'est à dire n+1, et on peut intuitivement admettre sans difficulté que $Y \rightsquigarrow \mathcal{U}([1, n+1])$.

Ainsi
$$\mathbb{E}(Y) = \frac{1 + (n+1)}{2} = \frac{n+2}{2}$$
.

Par ailleurs $\mathbb{E}(X) = \mathbb{E}(Y-1)$ et on sait que pour tout réels a et b on a $\mathbb{E}(aX+b) = a\mathbb{E}(X) + b$. On en déduit donc que $\mathbb{E}(X) = \mathbb{E}(Y) - 1 = \frac{n+2}{2} - 1 = \frac{n}{2}$.